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Abstract. Quantifier elimination is used in various automated reason-
ing tasks, including quantified SMT solving, exists/forall solving, pro-
gram synthesis, model checking, and constrained Horn clause (CHC)
solving. Complete quantifier elimination, however, is computationally in-
tractable for many theories. The recent algorithm QEL shows a promis-
ing approach to approximate quantifier elimination, which has resulted
in improvements in solver performance. QEL performs partial quanti-
fier elimination with a completeness guarantee that depends on a cer-
tain semantic property of the given formula. Considerably generalizing
the previous approach, we identify a subclass of local theories in which
partial quantifier elimination can be performed efficiently. We present
T -QEL a parametrized polynomial time algorithm that is a sound ex-
tension of QEL and is relatively complete for this class of theories. The
algorithm utilizes the proof theoretic characterization of the theories,
which is based on restricted derivations. Finally, we prove for T -QEL,
soundness in general, and relative completeness with respect to the iden-
tified class of theories.

1 Introduction

Several automated reasoning tasks, including quantified SMT solving [1], exist-
s/forall solving [3,4], program synthesis [17], model checking [15,9], and CHC
solving [22] utilize quantifier elimination. Regardless, the intractability of com-
plete quantifier elimination procedures, see e.g. [16,12,2], poses a challenge. As a
result, solvers often use some form of an approximate technique. An interesting
example of this, is the algorithm QEL proposed in [8], that resulted in significant
performance improvements in Z3 [19] and the CHC solver Spacer [15].

The problem QEL solves can be formulated as a partial quantifier elimination
problem. In particular, for any formula of the form ∃x̄ φ(x̄), where φ(x̄) is a
conjunction of literals, QEL computes a quantifier free ψ(ȳ) whose free variables
are among the xi and its existential closure, ∃ȳ ψ(ȳ), is equivalent to ∃x̄ φ(x̄).
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This can be seen as a relaxation of (complete) quantifier elimination, in which we
allow some of the quantified variables to remain. An important property of QEL
is that it is relatively complete for the theory of equality (with free functions),
Teq; that is, QEL guarantees to eliminate a variable xi if xi has an entailed
ground definition — i.e., φ(x̄) |= xi ≈ s for some arbitrary ground term s.

Despite this, QEL only deals with formulas in the language of Teq, and con-
sequently, its completeness guarantees are restricted to just Teq. We take a the-
oretical direction, and investigate for which other theories we can efficiently
generalize QEL while maintaining relative completeness with respect to the the-
ories. In particular, we explore theories in which we can do so in polynomial time.
We use the notion of locality [10,7] of a theory to identify theories in which we
can perform partial quantifier elimination efficiently. Using the proof theoretic
characterization of the theories, we present T -QEL, a generalization of QEL.

The notion of locality in theories was first introduced by Givan and McAllester
in [10,11,18]. They considered locality of theories in the context of First Order
Logic (FOL) without equality. They gave a proof theoretic account of locality
based on the concept of confining deductions to the subterms of an input for-
mula. Ganzinger in [7] considers locality in the context of FOL with equality
and gives a semantic characterization of local (equational) theories. We adopt
some results due to Ganzinger [7], to lift the proof theoretic characterization
of locality by Givan and McAllester to FOL with equality. We then base our
algorithm T -QEL on this proof theoretic characterization.

The reason we are interested in locality is that the uniform word problem
for local theories is polynomial time decidable [7]. That is, given a ground Horn
clause C and a local theory (locally) axiomatized by a finite set of Horn clauses
Φ, we can decide entailment from the theory, Φ |= C, in polynomial time. This
is central to generalizing QEL to other theories in polynomial time.

Another central issue that arises, when trying to generalize QEL, is the prob-
lem of deciding whether in the theory T , there is an entailed ground definition
from a conjunction of literals φ. That is, given a free variable x of φ deciding
whether for some arbitrary ground term s, φ |=T x ≈ s. The problem is compli-
cated by the fact that s is potentially an arbitrary term, not necessarily occurring
in φ. Since we are working in a countable language, however, if T has a decision
procedure for its quantifier free fragment, there is the following (rather naive)
semi-decision procedure: enumerate the ground terms s0, s1, . . . and for each si,
check whether φ ∧ x ̸≈ si is T -unsatisfiable, if so replace, in φ, x by si. Clearly,
this is sound, but potentially non-terminating.

A way to deal with this potentially non-terminating behavior, is to reduce
the search space for ground definitions to a finite one. Specifically, we introduce
the finite notion of being a constructively ground term with respect to a theory
T and a conjunction of literals φ. We then give a definition for a subclass of
local theories1, which we call locally ground theories, based on this concept.
It is worth noting that the constructively ground terms can be computed in
polynomial time.

1 Strictly speaking, we are considering an extended notion of locality from [7].
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Interestingly, several important theories shown in the literature to exhibit
locality properties are also locally ground. In particular, we show the theories
listed below to be locally ground; for each of these theories, we include in our
signature a countable set of free/uninterpreted function and constant symbols:
(i) The theory of recursively defined data structures Trd; (ii) the theory of
partial orders Tpo; (iii) the theory Tmo, where some functions are axiomatized
as monotone with respect to the partial order ≤; and (iv) the theory of equality
Teq.

Finally, building on the ideas discussed above, we present the partial quan-
tifier elimination algorithm T -QEL. T -QEL is a sound extension of QEL that
utilizes the concepts of restricted derivations and constructively ground terms
to solve the partial quantifier elimination problem in polynomial time for the
locally ground theories. We prove, for T -QEL, soundness in general and relative
completeness for the locally ground theories.

Applications beyond locally ground theories. The algorithm T -QEL can
be used as a partial quantifier elimination algorithm for theories that might not
necessarily be locally ground. Even for theories such as Linear Integer Arith-
metic and Linear Real Arithmetic — where (complete) quantifier elimination is
available — we can abstract away the semantics of the functions + and × as
simply monotonic and free (uninterpreted) functions respectively and keep the
semantics of ≤ as a partial order. This abstraction allows us to use T -QEL as a
potentially efficient preprocessing step to partially eliminate quantified variables
before performing the more expensive quantifier elimination algorithms of the
theories.

Contributions. The contributions of this paper can be summarized as follows.

• We identify a subclass of local theories, called locally ground theories, in
which partial quantifier elimination can be done in polynomial time.

• We show several important theories to be locally ground.
• We give a polynomial time algorithm by lifting the proof theoretic charac-

terization due to Givan and McAllester to FOL with equality.
• We prove for the algorithm T -QEL soundness in general, and relative com-

pleteness with respect to the locally ground theories.

2 Basic Notions and Notation

First Order Logic [5]. We assume the usual concepts from First order logic
(FOL) with equality such as model, satisfaction, logical consequence, and a the-
ory, as presented in e.g. [5,6]. We briefly summarize the notation used here.

For a given signature Σ, we take a Σ-structure A to be a tuple (A, I) where A
is the universe, and I is a mapping that assigns each k-ary function and predicate
symbol, f and P , a k-ary operation and relation, fA and PA, on A. We use V to
denote the set of all variables, and take a Σ-interpretation, I, to be a tuple (A,
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α) of a Σ-structure A and a variable assignment α : V → A. We denote by tI

the interpretation of the term t under I. We use the notation FV(φ) to denote
the set of free variables of the formula φ. Given a conjunction of literals φ, we
use Γφ for the set containing exactly the positive literals of φ.

For a given term t, we let St be the set consisting of the subterms of t, i.e.,
St = {x} if t is some variable x, and St = {t} ∪

⋃
Sti if t is f(t1, . . . , tn). We

extend the definition to Sφ and SΦ for a Σ-formula φ and a set of Σ-formulas Φ,
in the expected way. We denote byΣF the set of all function symbols inΣ, and by
ΣT the set of all terms generated from Σ. Given a function λ : P(ΣT ) → P(ΣT )
we adopt the notation Sλφ to denote the set λ(Sφ) assigned to Sφ.

Say that a subterm set Ψ is closed under the subterm relation, if, for all t ∈ Ψ
all the subterms of t are in Ψ . We say that a binary relation R on a subterm set
Ψ is a congruence relation if it is an equivalence relation and whenever tiRsi
and f(t1, . . . , tn), f(s1, . . . , sn) ∈ Ψ we have f(t1, . . . , tn)Rf(s1, . . . , sn).

We take a theory T to be a set of Σ-sentences that is closed under logical
consequence. Note that, for a given set of sentences (axioms) Φ, the consequences
of Φ, denoted by CnΦ = {φ | Φ |= φ}, is a theory. Say that φ is T -satisfiable
if there is a model of T that is also a model of φ. We use the notation |=T to
denote logical consequence in the theory T .
Horn Theories and Direct products [14]. We use the term basic Horn clause
for formulas of the form

∧
ψi → ψ, where ψi, ψ are atoms, to distinguish them

from (universal) Horn clauses ∀x̄ (
∧
ψi → ψ). Given a non-empty index set I

and a family of Σ-structures (Ai)i∈I , we use the notation Πi∈I Ai for the direct
product (product) of the given family of structures. For background on direct
products of models of Horn theories and products in general, see Ch. 9 of [14].
Egraphs [20,8]. An egraph is a well-known data structure to compactly represent
a set of terms and an equivalence relation on those terms [20]. We assume that
graphs have an ordered successor relation and use n[i] to denote the ith successor
(child) of a node n. We denote by deg(n), the out degree of a node n, i.e., the
number of edges leaving n.

Definition 1. (Egraph [8]) For a given signature Σ, an egraph is a tuple G =
⟨N,E,L, root ⟩, where
(a) ⟨N,E ⟩ is a directed acyclic graph (possibly multigraph).
(b) L : N → ΣF ∪ V labels nodes by function and variable symbols s.t. nodes

labelled by variables are leaves, and deg(n) = k if n is labelled by a k-ary
function symbol f .

(c) root : N → N maps a node to its representative such that the relation
ρroot := { (n, n′) | root(n) = root(n′) } is closed under congruence w.r.t.
root. That is, (n, n′) ∈ ρroot whenever L(n) = L(n′), deg(n) = deg(n′) >
0, and for 1 ≤ i ≤ deg(n), (n[i], n′[i]) ∈ ρroot.

Given an egraph G, we let termG : N → ΣT be the function that maps
nodes to their corresponding terms in the expected way. We assume the terms
of different nodes are different (i.e., term is injective) and denote by nt the node
whose term is t. We denote by egraph(φ) the egraph of φ built by the standard
procedure given in [20], see Section 2 of [8] for more.
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3 Overview

Intuitively, T -QEL, the algorithm presented in Section 5, is based on the fol-
lowing observation: for any formula of the form ∃xφ, if φ |=T x ≈ s for some
arbitrary ground term s, then |=T ∃xφ↔ φ[x/s]. Hence, effectively eliminating
the quantified variable x. As discussed in the introduction, we want to do this
in polynomial time, and we want to maintain relative completeness — that is,
we want to eliminate every variable that has an entailed ground definition. We
illustrate our approach in the following example.2

Example 1. Fix a signature Σpo = (ΣF , {≤}), where ΣF contains countably
many free function and constant symbols, and let Tpo be the theory of partial
orders in this signature. That is, ≤ is reflexive, transitive, and antisymmetric.
Now consider the formula ∃x̄ φ(x̄), where

φ(x̄) := x1 ≈ f(c) ∧ f(x2) ≈ g(x1) ∧ x3 ≤ g(f(x2)) ∧ g(f(x2)) ≤ x3

and c, f, g are free constant and function symbols. It is straightforward to see
that x1 has an entailed ground definition, however, it is not so clear for x2 and
x3. In fact, note for the term g(g(f(c))), which is not a subterm of φ, we have
φ(x̄) |=Tpo

x3 ≈ g(g(f(c))); this would be completely missed by QEL. It is
essential that we detect such entailments to guarantee relative completeness. We
proceed as follows:
Compute the partition Sφ/∼ of the subterms. Let ∼ be the congruence
relation defined on the subterm set of φ, Sφ, as: t1 ∼ t2 iff φ |=Tpo

t1 ≈ t2. Then,
note that the quotient set

Sφ/∼ = { {x1, f(c) }, { c }, {x2 }, { f(x2), g(x1) }, {x3, g(f(x2)) } }

represents terms which are equivalent under every model of φ and Tpo. Here is
where the locality of the theories is crucial, to compute the partition in polyno-
mial time. Let us use the notation [t] to refer to the equivalence classes in Sφ/∼,
e.g. [x1] = {x1, f(c) }.
Construct a ground term. Next, we pick for each equivalence class in Sφ/∼ (if
we can) a representative term that is either already ground or can be transformed
via substitution of equivalent terms into an equivalent ground term. For the class
[x1] we pick f(c), for the class [c] we pick c, and the class [x2] does not contain
such a term. For the class [f(x2)], we note that x1 ∼ f(c) and hence by functional
congruence we know φ |=Tpo

g(x1) ≈ g(f(c)), thus we pick g(x1). With similar
reasoning, we can see φ |=Tpo

g(f(x2)) ≈ g(g(f(c))), hence we pick g(f(x2)) for
the class [x3]. Interestingly, if a variable has any entailed ground definition, its
equivalence class will contain such a constructively ground term.
Eliminate by substitution. Finally, we note that φ(x̄) is equivalent (in Tpo)
with the following formula: f(c) ≈ f(c) ∧ f(x2) ≈ g(f(c)) ∧ g(g(f(c))) ≤
2 The intuitive explanation presented here slightly differs from the presentation of
T -QEL in Sec. 5. See the explanation for Algorithm 1(T -QEL) provided in Sec. 5.
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g(g(f(c)))∧g(g(f(c))) ≤ g(g(f(c))). Which we obtained by simply replacing each
variable and representative with their equivalent ground formula we inferred in
the above step. Hence, we output the formula ∃x2 f(x2) ≈ g(f(c))∧g(g(f(c))) ≤
g(g(f(c))) after removing redundant atoms.
Representation of Sφ/∼ on an egraph. Egraphs give us a compact way to
represent congruence relations. For local theories such as Tpo, representing the
partition Sφ/∼ amounts to saturating the egraph with implied atoms that are
formed over the subterms of φ. Locality here allows us to consider only those
atoms whose subterms are already in φ. We formalize this notion in Section 5.

4 Locally Ground Theories

In this section, we define a subclass of local theories in which the search space
for entailed ground definitions — i.e., entailments of the form φ(x̄) |=T xi ≈ s,
where s is an arbitrary ground term — is reduced to a finite space. We introduce
the notion of being a constructively ground term with respect to a conjunction
of literals φ and a theory T . We give a definition for the locally ground theories
based on this notion.

We adopt here the notion of a restricted derivation on which the definition
of local theories (in FOL without equality) [10] is based. As we are working with
theories in the context of FOL with equality, however, we consider the equality
axioms in our definition. We use Φeq to denote the set of equality axioms (i.e.,
reflexivity, symmetry, transitivity, functional and relational congruence).

A local theory in FOL with equality [7] is a theory that is axiomatized by
some finite set of (universal) Horn clauses Φ such that for any basic Horn clause
ψ, Φ |= ψ iff Φ[Sψ] |= ψ, where Φ[Sψ] is the set consisting of instances of Φ whose
subterms are all in Sψ.3,4 We say Φ is a local axiomatization of T . To motivate
the definition of restricted derivations in FOL with equality, we restate, in the
terminology of this paper, a result by Ganzinger.

Theorem 2. (Ganzinger [7]). The set of Horn clauses Φ is a local axiomati-
zation of T in FOL with equality iff Φ ∪ Φeq is a local axiomatization of T in
FOL without equality. That is, for any basic Horn clause ψ the following are
equivalent:

(i) Φ |= ψ iff Φ[Sψ] |= ψ.
(ii) Φ ∪ Φeq |=neq ψ iff (Φ ∪ Φeq)[Sψ] |=neq ψ.

where |=neq denotes logical consequence in FOL without equality.

This along with the characterization of local theories in FOL without equality
given by Givan and McAllester in [10] motivates the proof theoretic definition we
3 Note that, only ground formulas are considered in [7] and [10]. It is straightforward

to adopt the results to formulas with free variables, as is done here, by observing
for any quantifier free φ(x̄), we have |= φ(x̄) iff |= φ[xi/cxi ], where cxi are fresh
constants.

4 For ease of presentation, we assume no ground terms occur in the axioms Φ.
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adopt below. We note here that, the definition of locality we give below subsumes
the original notion of locality given in [10,7], as we are restricting the terms that
appear in the derivations to a (polynomially) extended subterm set. Note that
the uniform word problem is still polynomial time decidable.

In particular, let λ : P(ΣT ) → P(ΣT ) be a map associating with each set S
of terms a set λ(S) of terms. We further require λ be computable on finite inputs
S. For a given φ, recall we use the notation Sλφ to denote the set λ(Sφ) assigned
to Sφ. Call such a function λ, proper, if for each formula φ, (i) Sφ ⊆ Sλφ, (ii) the
size of Sλφ is polynomial in |Sφ| and (iii) Sλφ is closed under the subterm relation.

Definition 3. (Restricted Derivation). Let Γ ∪ {θ} be a set of atoms, and λ a
proper function, then, a restricted derivation of θ from Γ using the axioms Φ,
is θ if θ ∈ Γ and otherwise is a sequence of atomic formulas θ1, . . . , θn s.t. θn
is θ and we have for each θi (i) Sθi ⊆ Sλφ and, (ii) there exists a Horn clause
∀x̄ (ψ1 ∧ · · · ∧ ψk → ψ) ∈ Φ ∪ Φeq and a substitution σ such that θi is ψσ and
each ψjσ is either in Γ or appears earlier in the derivation.

Write Γ ∪ Φ ⊩λ θ if there exists a restricted derivation of θ from Γ using Φ
and λ. Then, we say a theory T is a local theory if it can be axiomatized by a
finite set of Horn clauses Φ, and there is a proper function λ, such that Γ ∪Φ ⊢ θ
iff Γ ∪Φ ⊩λ θ. Where ⊢ is the provability relation for some proof system that is
sound and complete for FOL with equality — i.e., Γ ⊢ θ iff Γ |= θ — as is done
in [10]. It is clear to see that, if we fix λ to be the identity on P(ΣT ) the original
notion of locality is recovered. In what follows we will simply write ⊩ and omit
λ when it is clear from context.

We now introduce the finite notion of being a constructively ground term with
respect to some given conjunction of literals and a theory. Constructively ground
terms are terms which might not be ground themselves, but can be transformed
into an equivalent ground term in polynomial time using the (extended) subterm
set of φ.

More formally, let φ be a conjunction of literals, T a theory, and λ a proper
function. We let ∼φ

T ,λ be the equivalence relation defined on Sλφ, such that t∼φ
T ,λ

s iff φ |=T t ≈ s . Note that ∼φ
T ,λ is a congruence relation on Sλφ. We denote by

[t]
φ

T ,λ the equivalence class of t induced by ∼φ
T ,λ. We simply write ∼ and [−] ,

when φ, T , and λ are clear from the context.
We now give a recursive definition for the constructively ground terms. A

term t ∈ Sλφ is constructively ground (c-ground) if either (i) t is a ground term,
or, (ii) t is f(t1, . . . , tn) and for each ti, [ti] = [ri] for some c-ground term ri. We
say that the equivalence class of t, [t], is ground if it contains a c-ground term.

Definition 4. (Locally Ground Theory). Call a theory T locally ground, if there
exists a proper function λ such that (i) T is a local theory with λ, and (ii)
for any T -satisfiable conjunction of literals φ and t a subterm of φ, whenever
φ |=T t ≈ s for an arbitrary ground term s, we have [t]

φ

T ,λ is ground.

The additional condition in the definition of locally ground theories allows
us to limit our attention to the c-ground terms. We state the following variant
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of McKinsey’s lemma for theories axiomatized by Horn clauses. This will help
us ignore the negative literals when considering the logical consequences of a
(satisfiable) conjunction of literals, as shown in Corollary 6. The proof involves
noting that models of Horn formulas are closed under direct products. Other
similar formulations of McKinsey’s lemma can be found in [14,13].

Lemma 5. (McKinsey’s lemma). Let Φ(x̄) be a set consisting of universal and
basic Horn clauses, and Ψ(x̄) be a set of atoms. If Φ(x̄) |=

∨
Ψ(x̄) then Φ(x̄) |= ψ

for some ψ ∈ Ψ(x̄).

Corollary 6. Let T be a theory axiomatized by a set of universal Horn clauses
Φ and φ(x̄) be a T -satisfiable conjunction of literals,

∧
φi ∧

∧
¬ψi, where each

φi and ψi is an atom. Then, if φ(x̄) |=T ψ(x̄) for some atom ψ(x̄), we have∧
φi |=T ψ(x̄).

4.1 Partial Orders

We take as our working signature Σpo = (ΣF , {≤}) where ΣF contains count-
ably many function and constant symbols. Now take as axioms for Tpo, the set
Φpo, containing the following Horn clauses.

∀x x ≤ x (Reflexivity)
∀x∀y∀z x ≤ y ∧ y ≤ z → x ≤ z (Transitivity)
∀x∀y x ≤ y ∧ y ≤ x→ x ≈ y (Antisymmetry)

The proof given below for Tpo can be adapted to show other theories to be lo-
cally ground. Specifically, it can be easily adapted for the theory Teq axiomatized
by the empty set of axioms (i.e., EUF) as well as for the theory of Recursively
Defined Data Structures [21] as shown in Section 4.2. Moreover, Tpo remains lo-
cally ground if we extend it by adding axioms expressing monotonicity of some
functions.

In this section, we take λp to be the identity on P(ΣT
po). Moreover, we simply

write ∼ and [−] in place of ∼φ
Tpo,λp

and [t]
φ

Tpo,λp
, when there is no ambiguity.

Lemma 7. For a given Tpo-satisfiable conjunction of literals φ, there exists a
model, Ip = (Ap, αp), of Tpo such that Ip |=Tpo

φ, and satisfies the following
properties:

(i) The universe Ap = (Sφ/∼) ∪ {ζ}, where ζ /∈ (Sφ/∼) .
(ii) For every term t in Sφ, tIp = [t].
(iii) For any ground term s, sIp ̸= ζ implies sIp = [r], for some c-ground term

r ∈ Sφ.

We defer the proof of Lemma 7 and proceed to show that Tpo is a locally
ground theory. After which we present a proof of the lemma.

Theorem 8. The theory of partial orders, Tpo, is a locally ground theory.
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Proof. The locality of Tpo follows from Theorem 2 in [24], by noting that every
weak partial model of its axioms, Φpo, weakly embeds into a total model of
Φpo. What remains to show is that Tpo satisfies condition (ii) in the definition
of locally ground theories. Towards showing this, assume φ is a Tpo-satisfiable
conjunction of literals, t a subterm of φ, and s an arbitrary ground term. Note
that s is not necessarily in Sφ. Now, assume φ |=Tpo

t ≈ s for some arbitrary
ground term s. By Lemma 7, Ip is a model of φ and Tpo , hence tIp = sIp . By
(ii) in Lemma 7, tIp = [t] = sIp and hence sIp ̸= ζ. Thus, by (iii) in lemma 7,
sIp = [r] for some c-ground term r, and hence [t] is ground.

Proof. (of Lemma 7) construct the model Ip = (Ap, αp), as follows.

(i) Set the domain Ap to be (Sφ/∼) ∪ {ζ}, where ζ /∈ Sφ/∼.
(ii) For each n-ary function symbol f and a1, . . . , an ∈ Ap,

fAp(a1, . . . , an) = [f(s1, . . . , sn)] if ∃ s̄, f(s1, . . . , sn) ∈ Sφ and ∀i, ai = [si] ;
otherwise fAp(a1, . . . , an) = ζ.

(iii) For the binary predicate symbol ≤ , (a) ζ ≤Ap ζ, and (b) for any t1, t2 ∈ Sφ,
[t1] ≤Ap [t2] iff Γφ ∪ Φpo ⊩ t1 ≤ t2 . 5

Finally, set Ip = (Ap, αp), where the variable assignment αp : V → Ap is defined
as αp(x) = [x] if x ∈ Sφ, and otherwise αp(x) = ζ.

We note here, as ∼ is a congruence relation, that each n-ary function fAp and
the binary relation ≤Ap are well-defined. We proceed to show that Ip satisfies
conditions (ii) and (iii) outlined in Lemma 7. We can use induction on t ∈ Sφ
to see that for each subterm t of φ, tIp = [t], hence Ip satisfies condition (ii).

To see that Ip satisfies condition (iii), we proceed by induction on t. If t = c
for some constant symbol c, then either c is in Sφ and so by definition cI = [c] or
c ̸∈ Sφ and cI = ζ. Otherwise, let t be the term f(t1, . . . , tn) and assume tIp ̸= ζ.
Then, by definition, we have each t

Ip

i = [ui] for some ui in Sφ. Now, note that
as each ti is ground and each t

Ip

i is different from ζ, we have by the inductive
hypothesis [ui] = [ri] for some constructively ground term ri. Moreover, by
definition tIp = fAp([u1], . . . , [un]) = [f(s1, . . . , sn)] for some si in [ui]. Hence,
[si], which is equal to [ui], contains the c-ground term ri. Therefore, the term
f(s1, . . . , sn) is a constructively ground term and the conclusion follows.

Finally, we show that Ip is a model of both Tpo and φ. Note that, for any t1, t2
in Sφ, we have by Corollary 6 and the fact that Φpo is a local axiomatization
of Tpo, [t1] ≤Ap [t2] iff φ |=Tpo

t1 ≤ t2. Hence, ≤Ap is reflexive, transitive, and
antisymmetric on Ap. Therefore, Ip |= Φpo, and thus is a model of Tpo. Next, to
see that Ip satisfies φ, recall that φ is a T -satisfiable conjunction of literals, φi,
of the form ti ≈ ui or ri ≤ si or their negations. Then, observe that Ip |= φi,
by noting φ |=Tpo

φi, and that for each t ∈ Sφ, tIp = [t]. Therefore, it follows
Ip |=Tpo

φ.

The construction is motivated by Shostak’s decision procedure [23] for the
quantifier free fragment of the theory of equality. However, unlike [23] we don’t

5 Equivalently, [t1] ≤Ap [t2] iff φ |=Tpo t1 ≤ t2.
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use the entire Herbrand universe, and simply interpret/map terms to their equiv-
alence classes under ∼.

4.2 Recursively Defined Data Structures

We now show that the theory of Recursively Defined Data Structures, Trd, [21]
without the acyclicity axioms is locally ground. We take as our working sig-
nature Σrd = (ΣF ∪ { cr, sr1, . . . , srk },∅) where ΣF contains countably many
function and constant symbols, and cr and sri are intended to denote the k-ary
constructor and unary selector functions respectively. Take as axioms for Trd,
the set Φrd, containing the following Horn clauses:

∀x cr(sr1(x), . . . , srk(x)) ≈ x (Construction)
∀x̄ sri(cr(x1, . . . , xk)) ≈ xi for i = 1, . . . , k (Selection)

The approach we take in showing that Trd is a locally ground theory is similar
to the approach we took in Section 4.1. Following Oppen’s method in [21], we
construct an infinite model of Trd. Let λr : P(ΣT

rd) → P(ΣT
rd) be the function

such that for each S ∈ P(ΣT
rd),

λr(S) = S ∪
⋃
t∈S

{ sri(t), cr(sr1(t), . . . , srk(t)) }

Note that λr is a proper function. For the rest of the section, we simply write
∼ and [−] in place of ∼φ

Trd,λr
and [t]

φ

Trd,λr
, when there is no ambiguity. Recall

that we use Sλr
φ as a shorthand for λr(Sφ).

Lemma 9. For a given Trd-satisfiable conjunction of literals φ, there exists a
model, Ir = (Ar, αr), of Trd such that Ir |=Trd

φ, and satisfies the following
properties:

(i) The set Sλr
φ /∼ is a subset of the universe Ar.

(ii) For every term t in Sφ, tIr = [t].
(iii) For any ground term s, sIr ∈ Z. Where Z is a set such that each element

of Z that is an equivalence class is ground — i.e., for all [t] ∈ Z ∩ Sλr
φ /∼,

[t] is ground.

We defer the proof of Lemma 9 and proceed to show that Trd is a locally
ground theory. After which we present a proof of the lemma.

Theorem 10. The theory of recursively defined data structures, Trd, is a locally
ground theory.

Proof. It can be seen for any basic Horn clause ψ that Φrd |= ψ iff Φrd[Sλr

ψ ] |= ψ.
Hence, Trd satisfies condition (i). What remains to show is that Trd satisfies
condition (ii) in the definition of locally ground theories. Towards showing this,
assume φ is a Trd-satisfiable conjunction of literals, t ∈ Sφ a subterm of φ, and
s an arbitrary ground term. Now, assume that φ |=Trd

t ≈ s. Then, by Lemma
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9, we have Ir |=Trd
t ≈ s, hence tIr = sIr . By (ii) in Lemma 9, tIr = [t] =

sIr , moreover, by (iii) in Lemma 9, sIr ∈ Z. Hence, by definition of Z, [t] is
ground.

Proof. (of Lemma 9). Construct the model, Ir = (Ar, αr), as follows. First
define for each n ≥ 0, the sets An, the partial functions crn and sri,n for each
i ∈ { 1, . . . , k }.

(i) Let A0 = (Sλr
φ /∼) ∪ { ζ }, where ζ /∈ Sλr

φ /∼.
(ii) Define the partial function cr0 on A0 as follows:

cr0(a1, . . . , ak) = [cr(t1, . . . , tk)] if ∃ t̄, cr(t1, . . . , tk) ∈ Sλr
φ s.t. ∀ i, ai = [ti] ;

otherwise cr0(a1, . . . , ak) is undefined.
(iii) For i = 1, . . . , k , define the partial functions sri,0 on A0 as follows:

sri,0(a) = [sri(t)] if ∃ t, sri(t) ∈ Sλr
φ and a = [t]; otherwise sri,0(a) is unde-

fined.

We now keep extending the domains of cr0 and sri,0. For each n > 0,

(i) Let Sn−1 = { ζa1 , . . . , ζak | a ∈ (An−1\dom sri,n−1) and ζai /∈ (An−1 ∪Akn−1) }
(ii) Let An = An−1 ∪ (Akn−1\dom crn−1) ∪ Sn−1.
(iii) Define crn to be a partial function on An that is an extension of crn−1, such

that for each b̄ = (b1, . . . , bk) ∈ Akn\dom crn−1:
crn(b̄) = b̄ if b̄ ∈ Akn−1\dom crn−1; otherwise crn(b̄) = a if b̄ = (ζa1 , . . . , ζ

a
k );

and finally, crn(b̄) is undefined for every other case.
(iv) Similarly, for i = 1, . . . , k , define the partial function sri,n on An, that is an

extension of sri,n−1, such that, for all a ∈ An\dom sri,n−1:
sri,n(a) = ζai if a ∈ An−1\dom sri,n−1; otherwise sri,n(a) = ai if
a = (a1, . . . , ak) ∈ Akn−1\dom crn−1; and finally sri,n(a) is undefined
for every other case.

Note that both crn and sri,n are total on An−1. We now construct the interpre-
tation Ir = (Ar, αr) as follows.

(i) Set the universe Ar =
⋃
n<ω

An .

(ii) For the function symbol, cr, and the k-tuple ā = (a1, . . . , ak) in (Ar)
k,

crAr (a1, . . . , ak) = crn(a1, . . . , ak), for the least index n, s.t. ā ∈ dom crn.
(iii) Similarly, for each selector function symbol sri, and a ∈ Ar,

srAr
i (a) = sri,n(a), for the least index n, such that a ∈ domsrn.

(iv) For each k-ary function symbol f ∈ ΣF and a1, . . . , ak in Ar,
fAr (a1, . . . , ak) = [f(s1, . . . , sk)] if ∃ s̄, f(s1, . . . , sk) ∈ Sφ and ∀i, ai = [si];
and otherwise fAr (a1, . . . , ak) = ζ.

Finally, define the variable assignment αr : V → Ar, as follows αr(x) =
[x] if x ∈ Sλr

φ and αr(x) = ζ otherwise. We note that all the functions above are
total on Ar. Moreover, as ∼ is a congruence relation, the functions are well-
defined. Now, to see that Ir |=Trd

φ, we first observe, using induction similar to
the proof given in [21] the following:
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1. If a ∈ dom sri,n then b̄ = (sr1,n(a), . . . , srk,n(a)) ∈ dom crn, and crn(b̄) = a.
2. If ā = (a1, . . . , ak) ∈ dom crn then sri,n(crn(a1, . . . , ak)) = ai.

Hence, the properties 1 and 2 above hold for the functions crA and srAi and
Ir |= Trd. Furthermore, we can see by induction on each t ∈ Sφ that tIr = [t], and
hence for each positive literal t1 ≈ t2 occurring in φ, Ir |= t1 ≈ t2. Additionally,
as φ is Trd-satisfiable, we have for each negative literal t1 ̸≈ t2 in φ, [t1] ̸= [t2]
and hence Ir |= t1 ̸≈ t2. Thus, Ir |=Trd

φ.
We now proceed to show that Ir satisfies the conditions (i) − (iii) given in

Lemma 9. Note A0 ⊆ Ar, hence, Ir satisfies condition (i). It is also straightfor-
ward to see by induction on t ∈ Sφ, that tIr = [t], hence Ir satisfies condition
(ii). To see Ir satisfies condition (iii), let Z =

⋃
n<ω Zn where Zn is defined as:

Z0 = { ζ } ∪ { [t] ∈ Sλr
φ /∼ | [t] is ground } and for n > 0,

Zn = Zn−1 ∪ (Zkn−1\dom crn−1) ∪
⋃

ζai ∈Sn−1

{ ζai | a ∈ Zn−1 }

Note that for every [t] ∈ Z ∩ Sλr
φ /∼, [t] is ground. Now, let s be a ground

term, we show by induction on s that sIr ∈ Z. It suffices to show sIr ∈ Zn for
some n. For the base case, if s = c for some constant c, then sIr is [c] if c ∈ Sφ
and ζ otherwise, in both cases sIr ∈ Z0. Otherwise, if s = f(t1, . . . , tn) for some
f ∈ ΣF , the argument is the same as in Lemma 7. For the case s = sri(t1), let
a = tIr

1 , then, we have by the inductive hypothesis, a ∈ Z. Let n be the least
index such that a ∈ dom sri,n, we proceed by induction on n. First, note that
for any n ≥ 0, we have Z ∩ An ⊆ Zn. Hence, for the base case, n = 0, we have
a = [t] for some ground class [t], and sIr = sri,0([t]) = [sri(t)]. Hence, sIr ∈ Z0 as
sri(t) is c-ground. For n > 0, we have either a ∈ An−1\dom sri,n−1 in which case
sIr = sri,n(a) = ζai and hence sIr ∈ Zn, or a = (a1, . . . , ak) ∈ Akn−1\dom crn−1

and sri,n(a) = ai ∈ Zn−1.
Similarly, for the case s = cr(t1, . . . , tk) we have by the induction hypothesis,

tIr
i ∈ Zni . Let n be the least index such that b̄ = (tIr

1 , . . . , tIr

k ) ∈ dom crn, we
proceed by induction on n. For n = 0, we can use a similar argument to the
case s = sri(t1). For the inductive case, we have either b̄ ∈ Akn−1\dom crn−1,
in which case sIr = crn(b̄) = b̄, and hence sIr ∈ Zn, or b̄ = (ζa1 , . . . , ζ

a
k ), and

sIr = crn(b̄) = a ∈ Zn−1.

5 Partial Quantifier Elimination

In this section, we consider the partial quantifier elimination problem and give
an efficient algorithm, T -QEL, that is relatively complete for the locally ground
theories. In particular, we consider the following problem: given a theory T and
a formula ∃x̄ φ(x̄), where φ(x̄) is a conjunction of literals, over the signature
Σ, find a quantifier free Σ formula ψ(ȳ) such that: (i) |=T ∃x̄ φ(x̄) ↔ ∃ȳ ψ(ȳ)
(ii) FV(ψ) ⊆ FV(φ) and (iii) for all x ∈ FV(φ), if x has an entailed ground
definition (i.e., φ |=T x ≈ s with s an arbitrary ground term), then x /∈ FV(ψ).
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In essence, we have reduced the number of quantified variables that have
entailed ground definitions from φ. We call ψ a quantifier reduction of ∃x̄ φ(x̄)
if it satisfies (i) and (ii). We say a procedure is relatively complete if for every
input, it computes a quantifier free formula satisfying (iii). For the rest of the
section, we fix a locally ground theory T = CnΦ. Moreover, for simplicity of
presentation, we take λ to be the identity on P(ΣT ).

Egraphs give us a compact way of representing congruence relations. In what
follows, we describe a construction of a certain egraph, G∗, which we call the
completion of the egraph of φ. The goal of the construction is to represent the
partition Sφ/∼ induced by the congruence relation ∼ on top of an egraph. For
locally ground theories, this allows us to efficiently search the equivalence classes
in Sφ/∼ for the constructively ground terms. Finally, we utilize QEL to extract
an equivalent formula from the egraph G∗.

Intuitively, our construction saturates the egraph of φ with implied atoms.
That is, we pick an instance of an axiom ψ1 ∧ · · · ∧ ψk → θ, for which all ψi
are represented (i.e., exist) in the egraph, after which we add θ to the egraph.
We stop when no new atoms are added. Locality here allows us to restrict to
instances of axioms whose subterms are already in φ. We formalize this notion
in the rest of the section, and use it to give proofs of soundness and relative
completeness for our algorithm T -QEL.

We refer to intermediate graphs arising from the construction that might
not satisfy the congruence condition (c) in the definition of egraphs, as partial
egraphs. For simplicity of presentation, we follow [8] and allow labelling nodes
with predicate symbols and introduce the fresh constant symbols ⊤ and ⊥.

Definition 11. (Representability). Given a (partial) egraph, G = (N,E,L, root),
say that a literal γ over the subterms of φ is representable in G if either (i) γ is
t1 ≈ t2, and root(nt1) = root(nt2), or (ii) γ is t1 ̸≈ t2, and for some node w in N
labelled with ̸≈, we have w[i] = nti , or (iii) γ is P (t1, . . . , tk) or ¬P (t1, . . . , tk),
and for some node w in N labelled with P , we have w[i] = nti , and root(w) = n⊤
if γ is positive and root(w) = n⊥ otherwise.

Let G0 = egraph(φ), and for k > 0, form Gk from Gk−1 by instantiating the
axioms on the nodes of Gk−1. More formally, let ψ ∈ Φ ∪ Φeq be an axiom of
the form ∀ x̄ (ψ1 ∧ · · · ∧ ψm → P (t1, . . . , tn)) where each ψi is an atom and P

is different from the equality symbol, then let Πψ
k = { ū ∈ Nn

k−1 | term(uj) =
tjσ and each ψiσ is representable in Gk−1 for some substitution σ } and
Πk =

⋃
{ (ū, P ) | ū ∈ Πψ

k for some ψ of the above form }. Then, form
Gk = (Nk, Ek, Lk, rootk) as follows:

(a) Nk = Nk−1 ∪ {w(ū, P ) | (ū, P ) ∈ Πk }
(b) Lk = Lk−1 ∪ { (w(ū, P ), P ) | w(ū, P ) ∈ Nk\Nk−1 }
(c) Ek = Ek−1∪{ (w(ū, P ), ui) | w(ū, P ) ∈ Nk\Nk−1 and ui ∈ ū } and set the order

of the children as wū[i] = ui.

To complete the construction of Gk we now consider an equality that arises
as a result of adding new nodes/atoms. Equality is handled by merging the
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Algorithm 1 T -QEL : An extension of QEL that utilizes theories.
Input: ∃x̄ φ(x̄), where φ(x̄) is a conjunction of literals; Φ a set of axioms.
Output: a quantifier reduction of ∃x̄ φ(x̄) in the theory T := CnΦ.
1: G← egraph(φ)
2: G ;Φ G∗

3: β ← G∗.find_defs()
4: core← G∗.find_core(β)
5: return G∗.to_formula(β,N∗\core)

equivalence classes of any two nodes that are inferred to be equal at this stage.
We define ∆ψ

k in a similar way we defined Πψ
k . Let ψ ∈ Φ ∪ Φeq be an axiom of

the form ∀ x̄(ψ1 ∧ · · · ∧ ψm → t1 ≈ t2), where each ψi is an atom. Then let
∆ψ
k = { ū ∈ N2

k−1 | term(uj) = tjσ and each ψiσ is representable in Gk−1

for some substitution σ }
Let ∆k =

⋃
∆ψ
k and let (u1, v1), . . . , (ur, vr) ∈ ∆k be an enumeration of

the elements of ∆k. Now we iteratively merge the equivalence classes of each ui
with that of vi, by setting the root of each u in the class of ui to that of vi. Let
root0k = rootk−1 and for 1 ≤ i ≤ r define rootik : Nk → Nk, for all u ∈ Nk as:

rootik(u) = n⊤ if u ∈ Nk\Nk−1, otherwise rootik(u) = rooti−1
k (vi) if

rooti−1
k (u) = rooti−1

k (ui), and otherwise rootik(u) = rooti−1
k (u).

Finally, define rootk = rootrk. This concludes the construction of Gk.
For a (partial) egraph G, let XG = { γ | γ is an atom representable in G }.

Then, let ℓ be the least index such that XGℓ
= XGℓ+1

, and let G∗ = Gℓ. We
use the notation G ;Φ G∗ to denote the construction above. Below, we show
that the maximum number of steps for the construction, is polynomial in |Sφ| .
Hence, giving us an overall polynomial time algorithm.

Lemma 12. The construction G ;Φ G
∗ takes at most O(|Sφ|m) steps, where

m is the maximum arity of the predicates occurring in the axioms and in φ.

Our algorithm T -QEL is presented in Algorithm 1. T -QEL takes as input
the axioms Φ of the theory and a formula ∃x̄ φ(x̄). The full details of all the steps
(except step 2) are discussed in [8]. Regardless, we will go ahead and provide a
brief explanation of each of the steps.

In step 1, the egraph of φ is constructed using the standard procedure. Then,
in step 2, we represent the partition Sφ/∼ of the subterms induced by ∼ on the
egraph. We note here that once Sφ/∼ has been represented, the newly added
predicate symbols don’t serve any purpose and can be removed from the egraph.
In step 3, a function β that picks a representative node (term) from each equiv-
alence class is computed. Step 4 identifies a subset of nodes (terms) that must
be considered in the output. Finally, step 5 extracts a formula from the egraph
using β and core.

We now proceed to show that the partition Sφ/∼ is represented on the egraph
G∗. First, we prove the following Lemma.
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Lemma 13. (Representability lemma). Let T be a locally ground theory axiom-
atized by Φ, φ a T -satisfiable conjunction of literals, G∗ the completion of the
egraph(φ), and γ an atom such that Sγ ⊆ Sφ, then φ |=T γ iff γ is representable
in G∗.

Proof. ( =⇒ ) To show representability in G∗ we show that γ is representable
in some Gk. The conclusion follows as for any k ≥ 0, XGk

⊆ XGℓ
. Now assume

φ |=T γ, then by Corollary 6, we have
∧
φi |=T γ hence for some proof calculus

that is sound and complete for FOL(≈) we have Γφ ∪ Φ ⊢ γ. By definition of
locality we have a restricted derivation, θ1, . . . , θd, of γ. If γ is in Γφ then the
conclusion follows trivially. For the case it does not, we proceed by induction on
the length of the derivation. For d = 1, we have for some clause ψ ∈ Φ ∪ Φeq
of the form ∀ x̄ (ψ1 ∧ · · · ∧ ψn → θ) and substitution σ, θσ is γ and each ψiσ
is in Γφ. Hence, each ψiσ is representable in G0 by the way the egraph(φ) is
constructed. Now, if γ is P (t1, . . . , tn), different from an equality atom, then
there exists nodes ū ∈ Πψ

1 and w(ū, P ) ∈ N1 such that wū is labelled with P and
w(ū, P )[i] = nti . Hence, P (t1, . . . , tn) is representable in G1. Otherwise, γ is an
equality atom and there exists (u1, u2) ∈ ∆ψ

1 with term(ui) = ti. Let (u1, u2) be
the jth element (uj , vj) ∈ ∆k in the enumeration given during the construction
of G1. Then we have merged the equivalence classes of uj and vj in G1. More
precisely, we have rootj1(uj) = rootj1(vj) and it can be shown by induction that
for all m ≥ j, rootm1 (uj) = rootm1 (vj), hence root1(uj) = root1(vj) and therefore
t1 ≈ t2 is representable in G1. In both cases we have shown γ is representable in
G1. For the inductive step we have for some clause ∀ x̄(ψ1 ∧ · · · ∧ ψn → ψ) and
substitution σ, ψσ is γ , and either ψiσ ∈ Γφ in which case ψiσ is representable
in G0 or ψiσ occurs earlier in the derivation. In the later case, we have by the
inductive hypothesis ψiσ is representable in some Gki . Let k = max{ ki }, then,
as XGki

⊆ XGk
, we have each ψiσ is representable in Gk. It follows then ψσ

which is γ is representable in Gk+1.
( ⇐= ) Let k ≤ ℓ be the least index s.t. γ is representable in Gk. We

proceed by induction on k. For k = 0, note that γ is representable in G0 =
egraph(φ) hence φ |=T γ. Now, for the inductive step, if γ is P (t1, . . . , tn) that
is different from an equality atom, then there are nodes ū ∈ Πψ

k and w(ū, P ) ∈
Nk\Nk−1 for some ψ ∈ Φ ∪ Φeq where ψ is of the form ∀ x̄(ψ1 ∧ · · · ∧ ψn →
P (t′1, . . . , t

′
n)) and term(ui) = t′iσ = ti for some substitution σ. Moreover, each

ψiσ is representable in Gk−1. By the inductive hypothesis we have φ |=T ψiσ
hence, φ |=T P (t′1, . . . , t

′
n)σ, and thus φ |=T P (t1, . . . , tn) as required. Otherwise,

γ is an equality atom, t1 ≈ t2, and we have (u1, u2) ∈ ∆ψ
k for some axiom ψ

of the form ∀ x̄ (ψ1 ∧ · · · ∧ ψn → t′1 ≈ t′2) s.t. term(ui) = t′iσ, (u1, u2) is the
jth element,(uj , vj), in the enumeration of ∆k and rootjk(nt1) = rootjk(uj) and
rootjk(nt2) = rootjk(vj). It can be shown by induction on j and the induction
hypothesis that φ |=T t′iσ ≈ ti. Furthermore, each ψiσ is representable in Gk−1

and hence by the inductive hypothesis φ |=T ψiσ. Therefore, φ |=T (t′1 ≈ t′2)σ
and hence φ |=T t1 ≈ t2 by transitivity.
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It follows then the class of a node, ρroot∗(nt), that emerges in G∗ corresponds
to the class of its term [t]

φ

T ,λ that is induced by ∼φ
T ,λ on the subterm set of φ.

This is essential as G∗ faithfully represents the partition Sφ/∼φ
T ,λ, and hence

allows for searching of the constructively ground terms.

Corollary 14. Assume T is a locally ground theory and φ a T -satisfiable con-
junction of literals. Then, for any subterms t, s ∈ Sφ, t ∼φ

T ,λ s iff root∗(nt) =
root∗(ns).

Theorem 15. (Soundness and Relative Completeness). Let T be a locally ground
theory axiomatized by Φ and φ(x̄) a T -satisfiable conjunction of literals. Then,

(a) The result of T -QEL(∃x̄ φ(x̄), Φ ) is a quantifier reduction of ∃x̄ φ(x̄).
(b) The algorithm T -QEL is relatively complete for T .

6 Conclusion and Future Work

We identified a subclass of local theories, called locally ground theories, in which
we can perform partial quantifier elimination efficiently while maintaining rela-
tive completeness. By lifting the proof theoretic characterization of locality to
FOL with equality, we gave the polynomial time algorithm, T -QEL. We showed
that T -QEL is sound in general and relatively complete for the locally ground
theories. We showed several theories, which were previously shown to exhibit
locality properties, were also locally ground. For future work, it would be inter-
esting to see how relative completeness is preserved for other theories and under
combination of theories. Moreover, we leave for future work investigating the
potential applications as an efficient preprocessing step for arithmetical theories.

Disclosure of Interest. The authors have no competing interests to declare that
are relevant to the content of this article.
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A Missing Proofs

Lemma 5. (McKinsey’s lemma). Let Φ(x̄) be a set consisting of universal and
basic Horn clauses, and Ψ(x̄) be a set of atoms. If Φ(x̄) |=

∨
Ψ(x̄) then Φ(x̄) |= ψ

for some ψ ∈ Ψ(x̄).

Proof. Assume to the contrary that for all ψ ∈ Ψ(x̄), Φ(x̄) ̸|= ψ. Then let Aψ be
a structure s.t. Aψ |= (

∧
Φ∧¬ψ) (āψ) for some āψ ∈ Anψ. Now let B be the direct

product of the structures, i.e., B = Πψ∈Ψ Aψ, and b̄ = (b1, . . . , bn) be a tuple
in B such that bi(ψ) = āψ(i). Then by Theorem 9.1.5 in [14] we have models
of Horn formulas are preserved under direct products, hence B |=

∧
Φ(b̄), thus

from our assumption B |=
∨
Ψ(b̄), and we have B |= ψ(b̄) for some ψ ∈ Ψ . Again

by Theorem 9.1.5 Aψ |= ψ(āψ). Contradiction.

Lemma 12. The construction G ;Φ G
∗ takes at most O(|Sφ|m) steps, where

m is the maximum arity of the predicates occurring in the axioms and in φ.

Proof. Note that there are at most |Φ| |Sφ|m distinct number of atoms P (t1, . . . , tn)
formed over the subterms of φ where P occurs in the head of some clause. The
construction above, at each step, only adds new nodes labelled by predicate
symbols having as children the original nodes ut for t ∈ Sφ. Hence, |XG| ≤
(|Φ|+n) |Sφ|m for all (partial) egraphs in the construction, where n is the number
of distinct predicate symbols occurring in φ. Hence, in at most k ≤ (|Φ|+n) |Sφ|m
steps we will have XGk

= XGk+1
and the conclusion follows.

Given an egraph G, the class of a node n ∈ N , classG(n) := ρroot(n), is the set
of all nodes that are equivalent to n. We denote by children(n) the set of nodes
with an incoming edge from n. We now adopt two definitions from [8] below.

Definition 16. (Constructively Ground Node [8]) Let G be an egraph and n be
a node in G, then n is a constructively ground (c-ground) node if either (i) it
is labelled by a constant symbol, or (ii) deg(n) > 0 and for each child n[i] of n,
there is a c-ground node in the class(n[i]).

Call an equivalence class of a node n, class(n), ground if it contains a c-ground
node.

Definition 17. (Admissible Representative Function [8]) Given an egraph G =
⟨N,E,L, root ⟩, a representative function β : N → N is admissible for G if

(a) β assigns unique representative per class.
(b) ρβ = ρroot.
(c) the graph Gβ is acyclic where Gβ = ⟨N,Eβ ⟩, and Eβ := { (n, β(c)) | c ∈

children(n), n ∈ N }.

Call a representative function β : N → N maximally ground if for every
node n ∈ N , β(n) is c-ground whenever class(n) is ground. We assume for any
representative function, β, whenever β(n⊤) ̸= β(n⊥) it selects n⊤ (resp. n⊥) as
their own representatives, i.e., β(n⊤) = n⊤ and β(n⊥) = n⊥.
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As a consequence of Corollary 14 we have for any c-ground term t ∈ Sφ, the
associated node nt ∈ N∗ is a c-ground node. Another consequence of Corollary
14 is that G∗ is indeed a valid egraph, that is the congruence condition (condition
(c)) in the definition of egraphs is satisfied. Now let γ =

∧
γi be a conjunction

of literals such that G∗ = egraph(γ). Note that as φ is satisfiable, so is γ. Below
we show using Lemma 13 that γ is equivalent with φ∗ = φ ∧

∧
θ∈D

θ, where D

contains all the atoms over the subterm of φ obtained via restricted derivations,
i.e., D = { θ | Γφ ∪ Φ ⊩ θ and Sθ ⊆ Sφ }. Intuitively, the lemma below lets us
view φ∗ as the “completion” of φ and G∗ as the egraph of φ∗.

Lemma 18. Let γ and φ∗ be as given above, then |= φ∗ ↔ γ.

Proof. We proceed in two steps, first we show |= φ∗ → γ then we show |= γ →
φ∗. i. ( |= φ∗ → γ ) We show |= φ∗ → γi. From which the conclusion follows. If
γi is an atom, then we have by the construction of egraphs, γi is representable
in the egraph(γ) = G∗, hence by Lemma 13 φ |=T γi. As T is a locally ground
theory, Γφ ∪ Φ ⊩ γi, hence γi ∈ D and |= φ∗ → γi. Otherwise, γi is a negative
literal and similarly, γi is representable in egraph(γ) = G∗. Moreover, as φ is
satisfiable, the negative literals represented in G∗ are exactly the negative literals
represented in G0 = egraph(φ). Which in turn are exactly the negative literals
occurring in φ. Therefore, γi occurs in φ and thus |= φ∗ → γi.

ii. ( |= γ → φ∗ ) Similarly, we show |= γ → θi where θi is a literal occurring
in φ∗. Assume θi is an atom, then as φ |=T θi we have by Lemma 13 θi is
representable in G∗ = egraph(γ), and hence by construction and completeness
of egraphs γ |= θi. Otherwise, θi is a negative literal occurring in φ, and hence
is represented in G∗ = egraph(γ). Similarly, as γ is satisfiable θi occurs in γ and
hence γ |= θi.

We will use Lemma 18 to later establish that the result of T -QEL(∃x̄ φ(x̄), Φ)
is a quantifier reduction of ∃x̄ φ(x̄). We restate here two results from [8]. The
second one gives necessary and sufficient conditions for termination during for-
mula extraction from egraphs. Additionally, it asserts the result of to_formula
is a quantifier reduction in Teq(i.e., the theory axiomatized by the empty set in
our current context).

Lemma 19. (Lemma 13 [8]). Representative functions β computed by find_defs
are admissible functions that are maximally ground.

Theorem 20. (Theorem 1 [8]). Let G be the egraph of some conjunction of
literals φ, core computed by QEL, and β an arbitrary representative function.
Then, the function G.to_formula(β,G.Nodes()\core) terminates with result ψ
such that |= ∃x̄ φ↔ ∃x̄ ψ iff β is admissible for G.

Below, we show that for nodes whose associated terms have an entailed
ground definition, their representative selected by a maximally ground repre-
sentative function is c-ground.
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Lemma 21. Let G∗ be the completion of G = egraph(φ), β an admissible rep-
resentative function that is maximally ground for G∗. Then, for any t ∈ Sφ and
its associated node nt ∈ N∗, if φ |=T t ≈ s, for some ground term s, then β(nt)
is c-ground and ntt(β(nt)) is ground.

Proof. Assume that φ |=T t ≈ s for some ground term s, then as T is a locally
ground theory we have for some c-ground term r ∈ Sφ, r ∼ t. By Corollary 14
we have root∗(nt) = root∗(nr), hence nr ∈ class(nt). Now as r is a c-ground
term we have nr is a c-ground node, thus by definition of maximally ground
β(nt) is c-ground. The rest of the proof for ntt(β(nt)) being ground is the same
as Theorem 2 in [8].

Theorem 15. (Soundness and Relative Completeness). Let T be a locally ground
theory axiomatized by Φ and φ(x̄) a T -satisfiable conjunction of literals. Then,

(a) The result of T -QEL(∃x̄ φ(x̄), Φ ) is a quantifier reduction of ∃x̄ φ(x̄).
(b) The algorithm T -QEL is relatively complete for T .

Proof. Let ψ(ȳ) be the result of T -QEL(∃x̄ φ(x̄), Φ). We show that conditions
(i), (ii) and (iii) given in the initial definition of partial quantifier elimination
are satisfied for ψ(ȳ). In what follows, we let β be the representative function
computed by QEL.

(i) |=T ∃x̄ φ(x̄) ↔ ∃ȳ ψ(ȳ). Let φ∗ and γ be as given in Lemma 18. First note
that |=T φ ↔ φ∗, furthermore, we have by Lemma 18, |= γ ↔ φ∗ giving
us |=T φ ↔ γ. By Lemma 19 we have β is an admissible representative
function and hence by Theorem 20 G∗.to_formula terminates with result
ψ s.t., |= ∃ȳ ψ ↔ ∃x̄ γ. The conclusion then follows, |=T ∃x̄ φ(x̄) ↔ ∃ȳ ψ(ȳ).

(ii) FV(ψ) ⊆ FV(φ). Trivial.
(iii) Assume φ(x̄) |=T xi ≈ t for some ground term t, then by Lemma 19 we

have β is an admissible representative function that is maximally ground.
Hence, by Lemma 21 we have the representative selected β(nxi) is c-ground
and ntt(β(nx)) is ground. Thus, xi is successfully eliminated from ψ, the
output of G∗.to_formula.


	Relatively Complete and Efficient Partial Quantifier Elimination
	Introduction
	Basic Notions and Notation
	Overview
	Locally Ground Theories
	Partial Orders
	Recursively Defined Data Structures

	Partial Quantifier Elimination
	Conclusion and Future Work
	Missing Proofs


