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Part I: Relative Computability



Part I: Relative Computability

Let us suppose we are supplied with some unspecified means of
solving number-theoretic problems; a kind of oracle as it were.
We shall not go any further into the nature of this oracle apart
from saying that it cannot be a machine. With the help of the or-
acle we could form a new kind of machine (call them o-machines),
having as one of its fundamental processes that of solving a given
number-theoretic problem.

Alan Turing, 1939



Oracle Turing machines

Definition 1 (Oracle Turing Machine)
An Oracle Turing machine (o-machine) M is a 6—tuple
(Qa q0, Sl, S27 67 Qf)' where

= @ is a finite set (called the states of the M)

= o € @ is the initial state.

= 51 ={B,0,1} is the oracle tape alphabet (which is assumed to be
read-only).

= Sy ={B,1} is the working tape alphabet.
" 5:Q xS xSy = QxS x{L,R} x {L,R} is a partial function.
= gy € @ is the final state.



Computations in o-machine

= It includes 2 two-way infinite tapes (The oracle and working tapes)
dived into cells and 2 reading heads.

= Oracle tape contains the characteristics function of some set A,
called the oracle(e {0,1}*)

= We begin with M in the starting state gg scanning the leftmost cells.

= Then machine computes according to §:
= To interpret (¢, s,t,¢,t', X, Y) €6 :
= [If on state ¢ the machine reads s on the oracle tape and ¢ on the
working tape
= it transitions into state ¢’ replacing t with ¢’
= and moves the oracle and working tape heads according to X and Y.



Computations in o-machine ctd..

= When viewed as a finite set of 7 tuples we call § an Oracle Turing
Program.

= Similar to register programs we fix an effective coding of all oracle
Turing programs, i.e P, is the ! oracle Turing program

= The input number x is represented by a string of x + 1 consecutive
1's.

= We say that M halts on input z if it reaches the halting state g in
a finite number of steps.

= The output y is the total number of 1’s in the working tape.

= M never makes any further moves after reaching state ¢y

= We say u is the use of the computation if w is the maximum cell
scanned on the oracle tape.



Turing Functionals

If P, with A on its oracle tape and input = halts with output y and u is
the use of the computation we write ®(z) = y (The Turing Functional)
and ¢ (z) = u (The use function).

We also write:

0 CIJQS(x) =y ,cpés(:r) = u, if it happens in s steps and e, z,y < s

= O7 (2) =y 9l (x) =uif o €2 (0 €{0,1}* and is finite) on
the oracle tape and u < |o|

» OA(x) | if @2(z) converges (i.e P. on input z halts)

= OA(x) 1 if @2 (z) diverges.

= WA = dom(®4) = {2 : 2 (x) |=y}

w W = dom(®7,) = {z: ®2,(z) I=y}

Note that @2 (z) =y <= Js®2,(z) =y and z € WP < IsWZ,



A-Computability, Turing reducibility

A partial function f is Turing computable in A (A-Turing computable),
written as f <7 A if, ®2(z) |=y iff f(z) =y.

A set B is Turing reducible to A iff it's characteristics function
xB <t A.

Turing reducibility generalizes the idea’s in many-one and one-one
reduction in standard turing machines.

In class we have effectively reduced IIjq¢ to {p € L§ : = ¢}.



Oracle Graphs of Turing Functional

Definition 2 (Minimum halting strings)

For all e,z we define the set of Minimum halting strings

Hep ={0:3s®7(x) | A¢Z(2) = |o] — 1}

strings o for which the computation of ®7(z) enters the halting state gy
after reading exactly o

Definition 3 (Prefix-Free)
A set S C 2<% s said to be prefix free iff

Vo,r€2¥(c€eSNo<T) = 7¢8S



Oracle Graphs of Turing Functional

Theorem 4

For every e and x, H. , is prefix free.

Proof.

Assume o € H. ., then @7 () | A7 () = |o| — 1 for some s (this
means that the oracle program P, after s steps and reading exactly o
on the oracle tape entered the halting state gy.)

Hence for any p such that o < p then @?(x) < |p| and similarliy if
p =0 @e(x) > |pl m
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Oracle Graphs of Turing Functional

Definition 5 (The Prefix-Free Oracle Graph)

Define the prefix-free oracle graph of ®7 as follows:

Fe:{<o,x,y>:<1>g(x) =y A O'EHE’I}

Theorem 6 (Unique Use Property)

For every x,y, e and oracle A, there is at most one 0 < A such that
(o,2,y) € Fe.

Proof.
Follows directly from H. , being prefix free. O
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Oracle Graphs of Turing Functionals

Definition 7 (The Oracle Graph)

Define the oracle graph of the functional ®. as

Ge={({o,z,y) : ®(z) =y}

Theorem 8 (Oracle Graph Theorem)

1. G. is single valued: ((o,z,y) € Ge AN{0,2,2) € G.) = y = z.
2. G. is monotonic: {o,x,y) € Go. = V7 = o(1,2,y) € G,

3. (0,2,y) € G. < It 2 o(7,2,y) € F,.
4

. G is computably enumerable.
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Use Principle

Theorem 9 (Use Principle)

1. @Mz) =y = IsTo(c < AN ®7 (x) =)

2. @7 (z) =y = Vt > sVT = 0(P] () =y)

3. ®9(z) =y = VA= o(®A(z) =v)

4. 02 (x)=yANAll =Bl = @8 (z) =y, where
¢ =¢i(2)

Proof.
(i) Any computation which converges does so at some finite stage,
having used only finitely many elements

(iii) when the machine produces the output y it enters the halting state
gf, and will never make any more moves on the current input z.
Therefore, for A = o the machine must eventually enter ¢; and give
output y by exactly the same computation, and will never make any

more moves. O "



Computably Enumerable

Definition 10

We say B is computably enumerable in A if B = WA = dom(®2) for

some e.
Definition 11
We say that B is £ form if B = {x: Jy; ... 3y, R (z,y1,...,yn)},

for some A-computable relation R*.

Theorem 12 (Quantifier Contraction)

A set B is ¥ form iff there exists an A-computable relation S such
that B = {x : JyS(z,v)}
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Computably Enumerable

Proof.
( <= )This holds by definition.

(=) Assume B is ©{! form then there is an A-computable relation
RAst B={z: 3y, .. 3y, RA(x,y1,...,yn)} now define S as follows:

S(x,2) = defn R(z, (2)1, (2)2; -, (2)n)

where z = (Z)O,p1 e , ,p% s the prime decomposition. As the

prime decomposition is a computable function
(B(i) = pn pf |z Api ™+

325(x,2) <= 3JzR(z,(2)1,(2)2, . (2)n)
Now note that < y,..., W R(T, Y1, s Yn)

< =x€B
Hence B = {z : 325(z, 2)}. O

z)we have that S(z, z) is also A-computable.

15



Computably Enumerable in A

Theorem 13
B is computably enumerable in A iff B is ${' form.

Proof.

(=) Assume B is computably enumerable then B = dom(®%") for
some e hence:
r€B <= z€c{r:0x)|}
< dsdo(oc <A N P (x)]) ..Use Principle
< dsdo(c<ANzEW)

Now note that 0 < A <= Vy(y < |o| = o(y) = A(y)) but this
A-computable. Also note that x € W7 is a computable relation (hence
A-computable). Therefore we have the form 3s3oR(x,¢e,0,s), where
R is A-computable. O
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Computably Enumerable in A

Proof.

( <= ) Now assume that B is in £ form. Then we have
B={x:3y1,..., Iy R(z,y)}
and hence by quantifier contraction
B ={z:3yS(z,y)}

Define the turing functional ®¢ (z) = pyS(x,y), then we have
T €B < WS(z,y) &= (2)=y &= reWC O

17



Turing Degrees

Definition 14
(i) A=r Biff A<r B and B <7 A. (Note. <r is reflexive and
transitive)

(ii) Define the Turing degree (degree of unsolvability) of A,

deg(A) ={B: B = A}

(iii) Let D the class of all degrees then form the partial order (D, <) as
a<biff A<p B. Writta< b iff A<y B (A <y B but B £7 A)
(iv) a is computably enumerable (c.e) if for some A € a, Ais c.e.

(vi) A degree a is computably enumerable (c.e) in b if for some A € a,
Alis c.e. in some B € b.

(v) A degree a is computably enumerable in and above (c.e.a) in b if a
isceinbandb<a

A =7 B should thought of as A and B being equally difficult to compute.

18



Turing Jumps

(i) Define the jump of A, A" = K4 = {z : ®4(z) |}. Note that this is
the halting problem relativized to A.
(i) The '™ jump of A as A© = A, A = (A(—D)Y’

Theorem 15 (Jump Theorem)

(i) A isceainA

(i) A" 7 A

(iii) B is c.e in A iff B <o A’

(iv) If Ais c.ein B and B <y C then A is c.e in C
(v) B<r Aiff B <o A’

(vi) If B=r A then B' =, A’ (i.e also B =1 A’)
(Vii) A'is ce in B iff A is c.e in B

19



Jumps of degrees

Now we are ready to define the jumps of degrees.

Definition 16
Define the jump of a degree a, a’ = deg(A’) for some A € a.

This is well defined by Jump Theorem (vi)
Let 0 = deg(@(™). Then by the Jump Theorem (i) and (i) we have

0<0 <. <0™

20



Jumps of degrees

Now note that:

0 =deg(w) ={B: B=r @} ={B: B is computable}

Also note that:

o' =K° ={z:9%(x) |}

T
is the halting problem.

hence we have

0’ =deg(@')={B:B=r K}

21



Part II: The Arithmetical
Hierarchy



The Arithmetical Hierarchy

Definition 17

(i) Aset Bis in (g, Ap) iff B is computable.

(i) For n > 1 a set Bis in %,, if there is a computable relation
R(z,y1,...,yn) such that:

x€B <= Jy1 Vy2..QunR(T, Y1, .., Yn)

where ) is 3 if n is odd and V if n is even.

(iii) For n > 1 a set B is in I, if there is a computable relation
R(z,y1,...,yn) such that:

x€B <= Vy Jyz..QunR(T, Y1, ..., Yn)

where @ is 3 if n is even and V if n is odd.
(iv) Similarly B is A,, iff B € ¥, N1I,

22



Quantifier Manipulation

Definition 18

Fix a set A. If we replace everywhere "computable” in the above
definition by "A-computable” then we have the definition of B being
Y, in A (Bexd)

Theorem 19

(i) Aeyx, iff Acll,

(i) Ae X, , (orlly,) = VYm>nAecX, NI,

(i) A, B €%, ,(I,) = AUB,ANB €%, (I,

(iv)(ReX, An>0NA={z:3yR(x,y)}) = Ae€X,
(vi)(B<m ANAEY,) = BeXx,

(vii) If R € ¥,,(I1,,) and A, B defined as below

(z,y) € A < Vz<yR(z,y,z2)
(z,y) € B <= Fz<yR(zx,y,2)

Then A, B € ¥, (I1,,). 23



Proof.
(i) Let A={z: Iy Vy2...R(z,y1, ..., yn)} and
B={x:3xV2..5,z2,...,2,)} The we have:

r€AUB <= JyVys ...R(x,y1, .., yn) VIV 22 ...5(x, 21, ooy 21)
— Fy Iz Vya Ve . .R(@,y1, .., yn) VS(x, 21, ...y 21)
—  JuVug..R(x, (u1)o, ..., (un)o) V S(z, (u2)o, .-, (Un)o)
(iv) We proceed by induction on n. If n =0 then R would be
computable and hence A, B are computable. For n > 0 assume R € X,
then we have by (iv) we have B € %,,. Now note:
(z,y) e A <= Vz<yR(z,y,2)
— Vz<yuS(z,y,z,u) .. forsome S ell,
= doVz < yS(x,y,z,0(%))

where o ranges over w<* (finite sequences of the naturals). Now by the
inductive hypothesis Vz < yS € I1,,_1, hence A € ¥,,. ]

24



.. continued
Proof.

For the case that R € II,, we have by (i) R € ¥,, and hence:
(zy)ed = (zy)¢A B
< (V2 <y)R(z,y,z) Hence A€ X, by (i)
= (3 <yRy,2)
again A € 11,,.

We proceed similarliy for B

25



Part 1l1: Post’s Theorem



Post’s Theorem

Definition 20 (n-complete)

A set A is X, (IL,,)-complete iff A € ¥,,(I1,) and for all
B e X,(Il,), B <o A.

Now we relate the jump hierarchy of degrees to the arithmetical hierarchy.
Theorem 21 (Post’s Theorem)

(i) B€ X,4+1 < B isc.einsomell, set <= (by The jump
theorem 15(vii)) B is c.e in some %,, set.

(i) @™ is %2, -complete for n > 0.

(i) B € Y41 <= Bisceina™.

(iv) BEA, < B <y o™,

26



Proof.
(i) (=) Let B € ¥,,11. The we have
x € B < Jy1Vy2..R(x,y1,..,Yn), now define the relation

S(x,y1) <= defn VY2Iys.. R(z, Y1, .., Yn)

now note that S € II,, and also x € B <= 3Jy; S(x,y1). Hence B is
Y71 in S. Therefore by Theorem 13 we have that B is c.e in S. O

27



Proof.

(<= ) Now assume B is c.e in some II,, set A, then by definition 10
we have for some e: B = WA = {z : ®2(z) |} hence:
r€B <= ®X2)l
<= dsdo(c < AN®Y (x)]) ...by Use Principle
(

< 3dsdo(c < ANz eW.))
As the relation x € W7 is computable, by Theorem 19(iv) it suffices to

show that 0 < A is En’—i-l- Now note that:

c<A < Vy<|o|(o(y) = A(y))

— Vy<lol((ocly) =1AycA)V(o(y) =0Ay ¢ A))

Now note the relation o(y) = 1 is computable , y € Aisin X, y ¢ A
in IT,,, hence by Theorem 19 (ii) they are all in X,, 1. Hence again by
19 (iii) we have the form Yy < |o|R(y, o) for R € ¥,,1. This is
bounded quantification hence by Theorem 19 (vi), we have o < A is
Zn-‘:—l- O

28



Proof.

(ii) We proceed by induction on nn. Now for n =1 we have

oW = {z : ®(x) ]}, and this is just the halting problem, which is
computably enumerable and 1-complete (Theorem 2.4.2. on Soare's
book). Hence is 31-complete.

For n > 1, Assume @) is 3.,-complete then we have by The jump
theorem 15(i) we have that @("*1) is c.e in @(™), hence by (i) we have
g(n-&-l) € EnJrl.

Now note that:

BeX,;1 <= Bceinsome X,set by (i)
<= Biscein @™ _induction and jump theorem 15(iv)
< B<; o) jump theorem 15(iii)

Hence @(**1) is %, ;-complete O

29



11

11t

B c.e in some X,;set by (i)

Biscein g™

B e Zn-i-l N Hn+1
B,E S EnJrl
B,B c.ein o™
B <y o

...(ii) and jump theorem 15(iv)

by (iii)

30



An obvious consequence of the above is that g(n+l) ¢ Y+l — Xn-
Hence the arithmetical hierarchy does not collapse.

Corollary 22

gt exn, 1 —%,.

Proof.

Assume for the sake of contradiction that @1 € ¥, then as (™) is
Y.,-complete we have gnt+l) <, o), contradicting the jump theorem
(Theorem 15 (ii)). O
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