
Turing degrees, The Arithmetical Hierarchy
and Post’s Theorem

Estifanos Getachew
December 1, 2023

Mathematical Logic and Computability Graduate Seminar
University of Waterloo

Logic and Computability Graduate Seminar

1

Outline

Part I: Relative Computability

Oracle Turing Machine

Turing Functionals

Turing Degrees

Part II: The Arithmetical Hierarchy

Part III: Post’s Theorem

2

Part I: Relative Computability

Part I: Relative Computability

Let us suppose we are supplied with some unspecified means of
solving number-theoretic problems; a kind of oracle as it were.
We shall not go any further into the nature of this oracle apart
from saying that it cannot be a machine. With the help of the or-
acle we could form a new kind of machine (call them o-machines),
having as one of its fundamental processes that of solving a given
number-theoretic problem.

Alan Turing, 1939

3

Oracle Turing machines

Definition 1 (Oracle Turing Machine)
An Oracle Turing machine (o-machine) M is a 6−tuple
(Q, q0, S1, S2, δ, qf), where

• Q is a finite set (called the states of the M)
• q0 ∈ Q is the initial state.
• S1 = {B, 0, 1} is the oracle tape alphabet (which is assumed to be

read-only).
• S2 = {B, 1} is the working tape alphabet.
• δ : Q × S1 × S2 → Q × S2 × {L, R} × {L, R} is a partial function.
• qf ∈ Q is the final state.

4

Computations in o-machine

• It includes 2 two-way infinite tapes (The oracle and working tapes)
dived into cells and 2 reading heads.

• Oracle tape contains the characteristics function of some set A,
called the oracle(∈ {0, 1}∗)

• We begin with M in the starting state q0 scanning the leftmost cells.
• Then machine computes according to δ:
• To interpret (q, s, t, q′, t′, X, Y) ∈ δ :

• If on state q the machine reads s on the oracle tape and t on the
working tape

• it transitions into state q′ replacing t with t′

• and moves the oracle and working tape heads according to X and Y .

5

Computations in o-machine ctd..

• When viewed as a finite set of 7 tuples we call δ an Oracle Turing
Program.

• Similar to register programs we fix an effective coding of all oracle
Turing programs, i.e Pe is the eth oracle Turing program

• The input number x is represented by a string of x + 1 consecutive
1’s.

• We say that M halts on input x if it reaches the halting state qf in
a finite number of steps.

• The output y is the total number of 1′s in the working tape.
• M never makes any further moves after reaching state qf

• We say u is the use of the computation if u is the maximum cell
scanned on the oracle tape.

6

Turing Functionals

If Pe with A on its oracle tape and input x halts with output y and u is
the use of the computation we write ΦA

e (x) = y (The Turing Functional)
and φA

e (x) = u (The use function).

We also write:

• ΦA
e,s(x) = y , φA

e,s(x) = u, if it happens in s steps and e, x, y < s

• Φσ
e,s(x) = y , φσ

e,s(x) = u if σ ∈ 2<ω (σ ∈ {0, 1}∗ and is finite) on
the oracle tape and u < |σ|

• ΦA
e (x) ↓ if ΦA

e (x) converges (i.e Pe on input x halts)
• ΦA

e (x) ↑ if ΦA
e (x) diverges.

• W A
e = dom(ΦA

e) = {x : ΦA
e (x) ↓= y}

• W A
e,s = dom(ΦA

e,s) = {x : ΦA
e,s(x) ↓= y}

Note that ΦA
e (x) = y ⇐⇒ ∃ s ΦA

e,s(x) = y and x ∈ W A
e ⇐⇒ ∃ s W A

e,s

7

A-Computability, Turing reducibility

A partial function f is Turing computable in A (A-Turing computable),
written as f ≤T A if, ΦA

e (x) ↓= y iff f(x) = y.

A set B is Turing reducible to A iff it’s characteristics function
χB ≤T A.

Turing reducibility generalizes the idea’s in many-one and one-one
reduction in standard turing machines.

In class we have effectively reduced Πhalt to {φ ∈ LS
0 : |= φ}.

8

Oracle Graphs of Turing Functional

Definition 2 (Minimum halting strings)
For all e, x we define the set of Minimum halting strings

He,x = {σ : ∃ s Φσ
e (x) ↓ ∧ ϕσ

e,s(x) = |σ| − 1}

strings σ for which the computation of Φσ
e (x) enters the halting state qf

after reading exactly σ

Definition 3 (Prefix-Free)
A set S ⊆ 2<ω is said to be prefix free iff

∀σ, τ ∈ 2<ω(σ ∈ S ∧ σ ≺ τ) =⇒ τ /∈ S

9

Oracle Graphs of Turing Functional

Theorem 4
For every e and x, He,x is prefix free.

Proof.
Assume σ ∈ He,x, then Φσ

e,s(x) ↓ ∧ϕσ
e,s(x) = |σ| − 1 for some s (this

means that the oracle program Pe after s steps and reading exactly σ

on the oracle tape entered the halting state qf .)

Hence for any ρ such that σ ≺ ρ then φρ
e(x) < |ρ| and similarliy if

ρ ≺ σ φρ
e(x) > |ρ|

10

Oracle Graphs of Turing Functional

Definition 5 (The Prefix-Free Oracle Graph)
Define the prefix-free oracle graph of Φσ

e as follows:

Fe = {⟨ σ, x, y ⟩ : Φσ
e (x) = y ∧ σ ∈ He,x}

Theorem 6 (Unique Use Property)
For every x, y, e and oracle A, there is at most one σ ≺ A such that
⟨ σ, x, y ⟩ ∈ Fe.

Proof.
Follows directly from He,x being prefix free.

11

Oracle Graphs of Turing Functionals

Definition 7 (The Oracle Graph)
Define the oracle graph of the functional Φe as
Ge = {⟨ σ, x, y ⟩ : Φσ

e (x) = y}

Theorem 8 (Oracle Graph Theorem)

1. Ge is single valued: (⟨ σ, x, y ⟩ ∈ Ge ∧ ⟨ σ, x, z ⟩ ∈ Ge) =⇒ y = z.
2. Ge is monotonic: ⟨ σ, x, y ⟩ ∈ Ge =⇒ ∀τ ≻ σ⟨ τ, x, y ⟩ ∈ Ge

3. ⟨ σ, x, y ⟩ ∈ Ge ⇐⇒ ∃τ ⪯ σ⟨ τ, x, y ⟩ ∈ Fe.

4. Ge is computably enumerable.

12

Use Principle

Theorem 9 (Use Principle)

1. ΦA
e (x) = y =⇒ ∃ s ∃σ(σ ≺ A ∧ Φσ

e,s(x) = y)
2. Φσ

e,s(x) = y =⇒ ∀t ≥ s∀τ ⪰ σ(Φτ
e,t(x) = y)

3. Φσ
e (x) = y =⇒ ∀A ≻ σ(ΦA

e (x) = y)
4. ΦA

e,s(x) = y ∧ A ↾↾ φ = B ↾↾ φ =⇒ ΦB
e,s(x) = y, where

φ = φA
e,s(x)

Proof.
(i) Any computation which converges does so at some finite stage,
having used only finitely many elements

(iii) when the machine produces the output y it enters the halting state
qf , and will never make any more moves on the current input x.
Therefore, for A ≻ σ the machine must eventually enter qf and give
output y by exactly the same computation, and will never make any
more moves.

13

Computably Enumerable

Definition 10

We say B is computably enumerable in A if B = W A
e = dom(ΦA

e) for
some e.

Definition 11
We say that B is ΣA

1 form if B = {x : ∃ y1 ... ∃ yn RA(x, y1, ..., yn)},
for some A-computable relation RA.

Theorem 12 (Quantifier Contraction)
A set B is ΣA

1 form iff there exists an A-computable relation S such
that B = {x : ∃yS(x, y)}

14

Computably Enumerable

Proof.
(⇐=)This holds by definition.

(=⇒) Assume B is ΣA
1 form then there is an A-computable relation

RA s.t B = {x : ∃ y1 ... ∃ yn RA(x, y1, ..., yn)} now define S as follows:

S(x, z) ⇐⇒ defn R(x, (z)1, (z)2, ..., (z)n)

where z = p
(z)0
0 , p

(z)1
1 , ..., p

(z)n
n is the prime decomposition. As the

prime decomposition is a computable function
(β(i) = µn pn

i |z ∧ pn+1
i ∤ z)we have that S(x, z) is also A-computable.

Now note that
∃zS(x, z) ⇐⇒ ∃zR(x, (z)1, (z)2, ..., (z)n)

⇐⇒ ∃y1, ..., ∃ynR(x, y1, ..., yn)
⇐⇒ x ∈ B

Hence B = {x : ∃zS(x, z)}.

15

Computably Enumerable in A

Theorem 13

B is computably enumerable in A iff B is ΣA
1 form.

Proof.
(=⇒) Assume B is computably enumerable then B = dom(ΦA

e) for
some e hence:

x ∈ B ⇐⇒ x ∈ {x : ΦA
e (x) ↓}

⇐⇒ ∃s∃σ (σ ≺ A ∧ Φσ
e,s(x) ↓) ...Use Principle

⇐⇒ ∃s∃σ (σ ≺ A ∧ x ∈ W σ
e,s)

Now note that σ ≺ A ⇐⇒ ∀y(y < |σ| =⇒ σ(y) = A(y)) but this
A-computable. Also note that x ∈ W σ

e,s is a computable relation (hence
A-computable). Therefore we have the form ∃ s ∃ σR(x, e, σ, s), where
R is A-computable.

16

Computably Enumerable in A

Proof.
(⇐=) Now assume that B is in ΣA

1 form. Then we have

B = {x : ∃y1, ..., ∃ynR(x, y)}

and hence by quantifier contraction

B = {x : ∃yS(x, y)}

Define the turing functional ΦC
e (x) = µyS(x, y), then we have

x ∈ B ⇐⇒ ∃yS(x, y) ⇐⇒ ΦC
e (x) = y ⇐⇒ x ∈ W C

e

17

Turing Degrees

Definition 14
(i) A ≡T B iff A ≤T B and B ≤T A. (Note. ≤T is reflexive and
transitive)
(ii) Define the Turing degree (degree of unsolvability) of A,
deg(A) = {B : B ≡T A}
(iii) Let D the class of all degrees then form the partial order (D, ≤) as
a ≤ b iff A ≤T B. Write a < b iff A <T B (A ≤T B but B ≰T A)
(iv) a is computably enumerable (c.e) if for some A ∈ a, A is c.e.

(vi) A degree a is computably enumerable (c.e) in b if for some A ∈ a,
A is c.e. in some B ∈ b.

(v) A degree a is computably enumerable in and above (c.e.a) in b if a
is c.e in b and b ≤ a

A ≡T B should thought of as A and B being equally difficult to compute.

18

Turing Jumps

(i) Define the jump of A, A
′ = KA = {x : ΦA

x (x) ↓}. Note that this is
the halting problem relativized to A.
(ii) The nth jump of A as A(0) = A, A(n) = (A(n−1))′

Theorem 15 (Jump Theorem)

(i) A′ is c.e.a in A

(ii) A′ ≰T A

(iii) B is c.e in A iff B ≤0 A′

(iv) If A is c.e in B and B ≤T C then A is c.e in C

(v) B ≤T A iff B′ ≤0 A′

(vi) If B ≡T A then B′ ≡1 A′ (i.e also B′ ≡T A′)
(Vii) A is c.e in B iff A is c.e in B̄

19

Jumps of degrees

Now we are ready to define the jumps of degrees.

Definition 16
Define the jump of a degree a, a′ = deg(A′) for some A ∈ a.

This is well defined by Jump Theorem (vi)

Let 0(n) = deg(∅(n)). Then by the Jump Theorem (i) and (ii) we have

0 < 0’ < < 0(n)

20

Jumps of degrees

Now note that:

0 = deg(∅) = {B : B ≡T ∅} = {B : B is computable}

Also note that:

∅′ = K∅ = {x : Φ∅
x (x) ↓}

is the halting problem.

hence we have

0’ = deg(∅′) = {B : B ≡T K}

21

Part II: The Arithmetical
Hierarchy

The Arithmetical Hierarchy

Definition 17
(i) A set B is in Σ0(Π0, ∆0) iff B is computable.
(ii) For n ≥ 1 a set B is in Σn if there is a computable relation
R(x, y1, ..., yn) such that:

x ∈ B ⇐⇒ ∃ y1 ∀ y2 ...QynR(x, y1, ..., yn)

where Q is ∃ if n is odd and ∀ if n is even.

(iii) For n ≥ 1 a set B is in Πn if there is a computable relation
R(x, y1, ..., yn) such that:

x ∈ B ⇐⇒ ∀ y1 ∃ y2 ...QynR(x, y1, ..., yn)

where Q is ∃ if n is even and ∀ if n is odd.
(iv) Similarly B is ∆n iff B ∈ Σn ∩ Πn

22

Quantifier Manipulation

Definition 18
Fix a set A. If we replace everywhere ”computable” in the above
definition by ”A-computable” then we have the definition of B being
Σn in A (B ∈ ΣA

n)

Theorem 19

(i) A ∈ Σn iff Ā ∈ Πn

(ii) A ∈ Σn , (or Πn) =⇒ ∀ m > n A ∈ Σn ∩ Πn

(iii) A, B ∈ Σn , (Πn) =⇒ A ∪ B, A ∩ B ∈ Σn , (Πn)
(iv) (R ∈ Σn ∧ n > 0 ∧ A = {x : ∃ y R(x, y)}) =⇒ A ∈ Σn

(vi) (B ≤m A ∧ A ∈ Σn) =⇒ B ∈ Σn

(vii) If R ∈ Σn(Πn) and A, B defined as below

⟨ x, y ⟩ ∈ A ⇐⇒ ∀ z < y R(x, y, z)

⟨ x, y ⟩ ∈ B ⇐⇒ ∃ z < y R(x, y, z)

Then A, B ∈ Σn(Πn). 23

Proof.
(iii) Let A = {x : ∃ y1∀ y2 ...R(x, y1, ..., yn)} and
B = {x : ∃ z1∀ z2 ...S(x, z1, ..., zn)}. The we have:

x ∈ A ∪ B ⇐⇒ ∃ y1∀ y2 ...R(x, y1, ..., yn) ∨ ∃ z1∀ z2 ...S(x, z1, ..., zn)
⇐⇒ ∃ y1∃ z1 ∀ y2 ∀ z2 ...R(x, y1, ..., yn) ∨ S(x, z1, ..., zn)
⇐⇒ ∃ u1∀ u2 ...R(x, (u1)0, ..., (un)0) ∨ S(x, (u2)0, ..., (un)0)

(iv) We proceed by induction on n. If n = 0 then R would be
computable and hence A, B are computable. For n > 0 assume R ∈ Σn

then we have by (iv) we have B ∈ Σn. Now note:
⟨ x, y ⟩ ∈ A ⇐⇒ ∀z < yR(x, y, z)

⇐⇒ ∀z < y∃uS(x, y, z, u) ... for some S ∈ Πn−1

⇐⇒ ∃σ∀z < yS(x, y, z, σ(z))

where σ ranges over ω<ω (finite sequences of the naturals). Now by the
inductive hypothesis ∀z < yS ∈ Πn−1, hence A ∈ Σn.

24

... continued
Proof.
For the case that R ∈ Πn we have by (i) R ∈ Σn and hence:

⟨ x, y ⟩ ∈ A ⇐⇒ ⟨ x, y ⟩ /∈ A

⇐⇒ ¬(∀z < y)R(x, y, z)
⇐⇒ (∃z < y)¬R(x, y, z)

Hence A ∈ Σn by (i)

again A ∈ Πn.

We proceed similarliy for B

25

Part III: Post’s Theorem

Post’s Theorem

Definition 20 (n-complete)
A set A is Σn(Πn)-complete iff A ∈ Σn(Πn) and for all
B ∈ Σn(Πn), B ≤0 A.

Now we relate the jump hierarchy of degrees to the arithmetical hierarchy.

Theorem 21 (Post’s Theorem)
(i) B ∈ Σn+1 ⇐⇒ B is c.e in some Πn set ⇐⇒ (by The jump
theorem 15(vii)) B is c.e in some Σn set.
(ii) ∅(n) is Σn-complete for n > 0.
(iii) B ∈ Σn+1 ⇐⇒ B is c.e in ∅(n).
(iv) B ∈ ∆n ⇐⇒ B ≤T ∅(n).

26

Proof.
(i) (=⇒) Let B ∈ Σn+1. The we have
x ∈ B ⇐⇒ ∃ y1 ∀ y2..R(x, y1, .., yn), now define the relation

S(x, y1) ⇐⇒ defn ∀y2∃y3...R(x, y1, ..., yn)

now note that S ∈ Πn and also x ∈ B ⇐⇒ ∃ y1 S(x, y1). Hence B is
Σ1 in S. Therefore by Theorem 13 we have that B is c.e in S.

27

Proof.
(⇐=) Now assume B is c.e in some Πn set A, then by definition 10
we have for some e: B = W A

e = {x : ΦA
e (x) ↓} hence:

x ∈ B ⇐⇒ ΦA
e (x) ↓

⇐⇒ ∃s∃σ(σ ≺ A ∧ Φσ
e,s(x) ↓) ...by Use Principle

⇐⇒ ∃s∃σ(σ ≺ A ∧ x ∈ W σ
e,s)

As the relation x ∈ W σ
e,s is computable, by Theorem 19(iv) it suffices to

show that σ ≺ A is Σn+1. Now note that:
σ ≺ A ⇐⇒ ∀y < |σ|(σ(y) = A(y))

⇐⇒ ∀y < |σ|((σ(y) = 1 ∧ y ∈ A) ∨ (σ(y) = 0 ∧ y /∈ A))

Now note the relation σ(y) = 1 is computable , y ∈ A is in Σn, y /∈ A

in Πn, hence by Theorem 19 (ii) they are all in Σn+1. Hence again by
19 (iii) we have the form ∀y < |σ|R(y, σ) for R ∈ Σn+1. This is
bounded quantification hence by Theorem 19 (vi), we have σ ≺ A is
Σn+1.

28

Proof.
(ii) We proceed by induction on n. Now for n = 1 we have
∅(1) = {x : Φ∅

x (x) ↓}, and this is just the halting problem, which is
computably enumerable and 1-complete (Theorem 2.4.2. on Soare’s
book). Hence is Σ1-complete.

For n ≥ 1, Assume ∅(n) is Σn-complete then we have by The jump
theorem 15(i) we have that ∅(n+1) is c.e in ∅(n), hence by (i) we have
∅(n+1) ∈ Σn+1.

Now note that:
B ∈ Σn+1 ⇐⇒ B c.e in some Σnset by (i)

⇐⇒ B is c.e in ∅(n) ...induction and jump theorem 15(iv)
⇐⇒ B ≤1 ∅(n+1) ...jump theorem 15(iii)

Hence ∅(n+1) is Σn+1-complete

29

Proof.
(iii)

B ∈ Σn+1 ⇐⇒ B c.e in some Σnset by (i)
⇐⇒ B is c.e in ∅(n) ...(ii) and jump theorem 15(iv)

(iv)
B ∈ ∆n+1 ⇐⇒ B ∈ Σn+1 ∩ Πn+1

⇐⇒ B, B ∈ Σn+1

⇐⇒ B, B c.e in ∅(n) ...by (iii)
⇐⇒ B ≤T ∅(n)

30

An obvious consequence of the above is that ∅(n+1) ∈ Σn+1 − Σn.
Hence the arithmetical hierarchy does not collapse.

Corollary 22
∅(n+1) ∈ Σn+1 − Σn.

Proof.
Assume for the sake of contradiction that ∅(n+1) ∈ Σn then as ∅(n) is
Σn-complete we have ∅(n+1) ≤1 ∅(n), contradicting the jump theorem
(Theorem 15 (ii)).

31

	Part I: Relative Computability
	Oracle Turing Machine
	Turing Functionals
	Turing Degrees

	Part II: The Arithmetical Hierarchy
	Part III: Post's Theorem

